Django Property Filter
Release 1.0.0

Eric Ziethen

Mar 26, 2021

CONTENTS:

Overview

L1 OVerVIEW oo o e e e e e 1
1.2 Howitworks o e e e e e e 1
Installation 3
2.1 Requirements L e e e e 3
2.2 Installation oL e e e e e e e e e 3
Getting Started 5
3.1 Example Model e 5
3.2 Implicit Filter Creation 00 0 e e e e 5
3.3 Explicit Filter Creation 0 o e e e e e e e e e e e e e 6
Limitations 7
4.1 Available filter eXpressionso u i e e e e e e 7
4.2 Property tyPeS . . v v v i i e 7
4.3 Performanceo e e e e e e 7
4.4 Database limitations e e e e 7
Additional FilterSet Options 9
5.1 Metaoptions . . . v v vt e 9
Filter Reference 11
6.1 Filter to Property Filter Mapping e e e e e e 11
6.2 Supported Property Filter Expressions L e 12
6.3 Supported Base Lookup Expressions L o 13
6.4 Invalid Type Comparison e 13
6.5 Core ArgUMENtS o v v v i i e e e e e e e e e e e e e 13
6.6 AppendiX e e e e e e e e e e e 14
Development and Testing 15
7.1 Runthe Test Suite locally 15
7.2 RuntheLinters o e e e e e 15
7.3 Runthe Django Test Project e e e 15

CHAPTER
ONE

OVERVIEW

1.1 Overview

Django-property-filter provides an extenstion to django-filter. It extend’s django-filter’s classes to provide additional
support for filtering django models by properties.

The aim is to provide identical (where possible) functionality for properties as django-filter does for database fields.
For this the new classes directly inherit their django-filter counterpart’s features and the setup and configuration is
aimed to be the same.

This means that the django-filter documentation can be applied to django-property-filter as well.

For example django-filter uses a class NumberFilter and django-property-filter extends it and creates PropertyNum-
berFilter supporting the same functionality and additional the possibility to filter properties as well.

Because property fields are not part of database tables they cannot be queried directly with sql and are therefore not
natively supported by django and django-filter.

Django-property-filter also provides a filterset that can handle filters and property filters together.

1.2 How it works

Where django-filter directly applies the filtering to the queryset, django-property-filter can’t do that because the prop-
erties are not database fields. To workaround this, all entries are compared in memory against all specified filters
resulting in a list of matching primary keys. This list can then be used to filter the original queryset like this:

queryset.filter (pk__in=filtered_pk_list)

Because of this the actual filtering is happening in memory of the django application rather than in sql.

https://django-filter.readthedocs.io/
https://www.djangoproject.com/
https://django-filter.readthedocs.io/en/master/

Django Property Filter, Release 1.0.0

2 Chapter 1. Overview

CHAPTER
TWO

INSTALLATION

2.1 Requirements

¢ Python: 3.6,3.7,3.8,3.9
¢ Django: 2.2, 3.0, 3.1
* Django-filter: 2.3+

2.2 Installation

Install using pip:

’pip install django-property-filter

Then add ‘django_property_filter’ to your INSTALLED_APPS.

INSTALLED_APPS = [

'django_property_filter',

Django Property Filter, Release 1.0.0

4 Chapter 2. Installation

CHAPTER
THREE

GETTING STARTED

Django-property-filter provides extended functionality to django-filter to allow filtering by class properties by provid-
ing new Sub Classes to django-filter’s Filter and Filterset classes.

All existing django-filter functionality is still working as before.

3.1 Example Model

Our Model:

from django.db import models

class BookSeries (models.Model) :
name = models.CharField(max_length=255)

@property
def book_count (self) :
return Book.objects.filter (series=self) .count ()

class Book (models.Model) :
title = models.CharField (max_length=255)
price = models.DecimalField()
discount_percentage = models.IntegerField()
author = models.TextField()
series = models.ForeignKey (BookSeries)

@property
def discounted_price(self):
return self.price » self.discount_percentage / 100

3.2 Implicit Filter Creation

If we want to filter by discounted price as well as number of books in a series, which both are properties and not fields
in the database, we would do the following.:

from django_property filter import (
PropertyFilterSet,
PropertyNumberFilter

(continues on next page)

Django Property Filter, Release 1.0.0

(continued from previous page)

class BookFilterSet (PropertyFilterSet) :

class Meta:
model = Book

exclude = ['price']

property_fields = [
('"discounted_price', PropertyNumberFilter, ['lt', 'exact']),
('"series.book_count.', PropertyNumberFilter, ['gt', 'exact']),

This will create 4 Filters
1.) A “less than” and an “exact” filter for the “discounted_price” property of the Book Model
2.) A “greater than” and an “exact” filter for the “book_count” property of the related Model “series”.

Since PropertyFilterSet is and extension to django-filter’s Filterset which requires either the Meta attribute “fields” or
“exclude” to be set we excluded the “price” field. If we had instead used:

fields = ['price']

It would also have created an “exact” filter for the book price.
The only difference to using a normal FilterSet from django-filter is the “property_fields” field.
The “property_fields” is a list of tuples with 3 values.

1.) The property name. If the property is on a related Model it should be separated by “__”, and can span
multiple levels e.g. fk__fk__fk__property

2.) The specific Property Filter to use. This is necessary since it can’t be determined what the return type of
the property will be in all cases

3.) The list of lookup expressions.

3.3 Explicit Filter Creation

It is also possible to create Filters explicitely:

from django_property filter import PropertyNumberFilter, PropertyFilterSet

class BookFilterSet (PropertyFilterSet) :
prop_number = PropertyNumberFilter (field name='discounted_ price', lookup_expr='gte

‘—>')

class Meta:
model = NumberClass
fields = ['prop_number']

This creates a “greater than or equel” filter for the discounted_price property

6 Chapter 3. Getting Started

CHAPTER
FOUR

LIMITATIONS

4.1 Available filter expressions

Most but not all filter expressions that django-filter supports are supported. To see a list of available expressions for
each property filter see Filter Reference

4.2 Property types

Because properties are evaluated at runtime the types cannot be predetermined beforehand like it is the case with
database fields. Therefore there might be unexpected behaviour during filtering.

4.3 Performance

Because all the filtering is done in memory it performs slower than django-filter where the filtering happens directly
in sql. This will be impacted by the numbers of filters used at the same time and the size of the data in the table.

4.4 Database limitations

In theory there is no limit for most databases how many results can be returned from a filter query unless
the database implements a limit which will impact how many results django-property-filter can return.

sqlite

Warning: Sqlite3 defines SQLITE_MAX_VARIABLE_NUMBER which is a limit for parameters
passed to a query.

See “Maximum Number Of Host Parameters In A Single SQL Statement” at https://www.sqlite.org/
limits.html for further details.

Depending on the version this limit might differ. By default from version 3.32.0 onwards, sqlite should
have a default of 32766 while versions before this the limit was 999. A different limit can also be set
at compile time and python is compiling their own sqlite version.

For example Python 3.9.1 comes with sqlite version 3.33.0 and the 999 max parameter limitation still
exists

https://www.sqlite.org/limits.html
https://www.sqlite.org/limits.html

Django Property Filter, Release 1.0.0

Because of the way django-property-filter queries the database (i.e. with a prefilterd list of primary keys),
the number of sql parameters needed might exceed the set limit.

Django-property-filter will try to return all values if possible, but if not possible it will try to return as
many as possible limiting the sql parameters to not more than 999 and log a warning message similar to:

WARNING:root:0nly returning the first 3746 items because of max parameter
—~limitations of Database "sglite"

It is possible to set a custom limit via the environment variable “USER_DB_MAX_PARAMS”. For
example the user uses a custom compiled sqlite version with a different than the default value for
SQLITE_MAX_VARIABLE_NUMBER the setting “USER_DB_MAX_PARAMS” to that value will use
this value as a fallback rather than default values.

8 Chapter 4. Limitations

CHAPTER
FIVE

ADDITIONAL FILTERSET OPTIONS

This document provides a guide on using additional PropertyFilterSet features in addition to FilterSet.

5.1 Meta options
* property_fields

5.1.1 Automatic filter generation with property fields

The PropertyFilterSet is capable of automatically generating filters for a given clas Properties accessible by
the model or it’s related models.

class BookFilterSet (PropertyFilterSet) :

class Meta:
model = Book

exclude = ['price']

property_fields = [
('"discounted_price', PropertyNumberFilter, ['lt', 'exact']),
('"series__book_count.', PropertyNumberFilter, ['gt', 'exact'l]),

]

The “property_fields” is a list of tuples with 3 values.

1.) The property name. If the property is on a related Model it should be separated by “__”, and can span
multiple levels e.g. fk__fk_ fk__ property

2.) The specific Property Filter to use. This is necessary since it can’t be determined what the return type of
the property will be in all cases

3.) The list of lookup expressions.

Django Property Filter, Release 1.0.0

10 Chapter 5. Additional FilterSet Options

CHAPTER
SIX

FILTER REFERENCE

This is a reference document with a list of the filters and their property specific arguments specific for property filters.

6.1 Filter to Property Filter Mapping

The following tables shows the corresponding Property Filters for Filters from django-filters.

Filter Property Filter

AllValuesFilter Property All ValuesFilter
AllValuesMultipleFilter Property AllValuesMultipleFilter
BaseCSVFilter PropertyBaseCSVFilter
BaselnFilter PropertyBaselnFilter
BaseRangeFilter PropertyBaseRangeFilter
BooleanFilter PropertyBooleanFilter
CharFilter PropertyCharFilter

ChoiceFilter PropertyChoiceFilter

DateFilter PropertyDateFilter
DateFromToRangeFilter PropertyDateFromToRangeFilter
DateRangeFilter PropertyDateRangeFilter
DateTimeFilter PropertyDateTimeFilter

DateTimeFromToRangeFilter

PropertyDateTimeFromToRangeFilter

DurationFilter

PropertyDurationFilter

Filter Property Filter

IsoDateTimeFilter PropertylsoDateTimeFilter
IsoDateTimeFromToRangeFilter | PropertyIsoDateTimeFromToRangeFilter
LookupChoiceFilter PropertyLookupChoiceFilter
ModelChoiceFilter N/A (Not needed because filtering foreign key
ModelMultipleChoiceFilter N/A (Not needed because filtering foreign key
MultipleChoiceFilter PropertyMultipleChoiceFilter

NumberFilter PropertyNumberFilter

NumericRangeFilter PropertyNumericRangeFilter

OrderingFilter PropertyOrderingFilter

RangeFilter PropertyRangeFilter

TimeFilter PropertyTimeFilter

TimeRangeFilter PropertyTimeRangeFilter

TypedChoiceFilter Property TypedChoiceFilter

TypedMultipleChoiceFilter

Property TypedMultipleChoiceFilter

UUIDFilter

PropertyUUIDFilter

11

Django Property Filter, Release 1.0.0

6.2 Supported Property Filter Expressions

The following tables shows the supported lookup expressions and hightlights the default one if none is specified.

Property Filter

Supported Expressions

Property All ValuesFilter

exact, iexact, contains, icontains, gt, gte, It, lte, startswith, istartswith,
endswith, iendswith

Property All ValuesMultipleFilter

exact, iexact, contains, icontains, gt, gte, It, lte, startswith, istartswith,
endswith, iendswith

PropertyBaseCS VFilter in, range
PropertyBaselInFilter in
PropertyBaseRangeFilter range

PropertyBooleanFilter

exact, isnull

PropertyCharFilter

exact, iexact, contains, icontains, gt, gte, It, Ite, startswith, istartswith,
endswith, iendswith

PropertyChoiceFilter”

exact, iexact, contains, icontains, gt, gte, lt, Ite, startswith, istartswith,
endswith, iendswith

PropertyDateFilter exact, gt, gte, It, Ite
PropertyDateFromToRangeFilter range
PropertyDateRangeFilter exact
PropertyDateTimeFilter exact, gt, gte, It, lte
PropertyDateTimeFromToRange- range

Filter

PropertyDurationFilter

exact, gt, gte, It, Ite

PropertylsoDateTimeFilter

exact, gt, gte, It, lte

PropertylsoDateTimeFromToR-
angeFilter

range

PropertyLookupChoiceFilter”

exact, iexact, contains, icontains, gt, gte, It, Ite, startswith, istartswith,
endswith, iendswith

PropertyMultipleChoiceFilter”

exact, iexact, contains, icontains, gt, gte, It, Ite, startswith, istartswith,
endswith, iendswith

PropertyNumberFilter

exact, contains, gt, gte, It, Ite, startswith, endswith

PropertyNumericRangeFilter'

exact, contains, contained_by, overlap

PropertyOrderingFilter” exact
PropertyRangeFilter range
PropertyTimeFilter exact, gt, gte, It, Ite
PropertyTimeRangeFilter range

Property TypedChoiceFilter’

exact, iexact, contains, icontains, gt, gte, lt, lte, startswith, istartswith,
endswith, iendswith

PropertyTypedMultipleChoice-
Filter’

exact, iexact, contains, icontains, gt, gte, It, lte, startswith, istartswith,
endswith, iendswith

PropertyUUIDFilter

exact

2 Explicit Creation only, choices need to be passed (see Explicit Filter Creation)

! Postgres only
3 see PropertyOrderingFilter

12

Chapter 6. Filter Reference

Django Property Filter, Release 1.0.0

6.3 Supported Base Lookup Expressions

This is a list lookup expressions supported by all Property Filters unless excludes specifically.

Filter Expression | Purpose

contained_by Subset of the given value

contains Contains value (case sensitive)
endswith Ends with value (case sensitive)

exact Matches value exact (case sensitive)
gt Greater than

gte Greater than or equal

icontains Contains value (case insensitive)
iendswith Ends with value (case sensitive)
iexact Matches value exact (case insensitive)
in Matches specified list of values or range
isnull Is null

istartswith Starts with value (case sensitive)

It Less than

Ite Less than or equal

overlap Overlapping with the given value
range Part of the given range

startswith Starts with value (case sensitive)

Warning: Sqlite by default uses case insensitive text comparison, so e.g. ‘exact’ and ‘iexact’ will give the same
result. Even if turning on case sensitivity with PRAGMA case_sensitive_like, both still result in the same result.

Django-property-filter will behave as normally expected in this case and will correctly check for case sensitivity.

6.4 Invalid Type Comparison

When the selected Filter Type and comparison is incompatible with the type the the property returns that queryset
entry will not be a match and an error is logged similar to

73]

Error during comparing property value “15” with filter value “text” with error:
instances of ‘int’ and ‘str’”

<’ not supported between

6.5 Core Arguments

6.5.1 field name

The name of the property to lookup.
This can be

1.) Property directly on the model e.g. “field_name="my_property

2.) A Related field property e.g. “field_name="related__my_property’” which can span as many
models as are related

6.3. Supported Base Lookup Expressions 13

Django Property Filter, Release 1.0.0

6.5.2 lookup_expr

The lookup expression to filter against. The default lookup expression when not specified will be ‘exact’ if the filter
supports it. Some filters only support ‘range’ and this will be the default.

6.6 Appendix

6.6.1 PropertyOrderingFilter

Because the field parameters are passed as arguments this filter can only be created explicitely. For example:

prop_age = PropertyOrderingFilter (fields=('prop_age', 'prop_age'))

Warning: Sorting is all happening in memory rather than sql. Since this filter depends on sorted querysets, the
sorting loads the values into memory first and therefore can make it an expensive operator. Carefull with larger
data sets.

Because of the in memory sorting, sorting is only supported by a single property

14 Chapter 6. Filter Reference

CHAPTER
SEVEN

7.1 Run the Test Suite locally

For running tests using sqlite use either

DEVELOPMENT AND TESTING

Windows: $ dev\run_tests.bat sqglite
Linux: $ dev/run_tests.sh sqglite

or for postgresql (needs local postgres setup first)

Windows: $ dev\run_tests.bat postgres-local
Linux: $ dev/run_tests.sh postgres—-local

7.2 Run the Linters

Windows: $ dev\run_linters.bat
Linux: S dev/run_linters.sh

7.3 Run the Django Test Project

Change to the test project directory setup and run the django project

cd tests\django_test_proj
python manage.py migrate
python manage.py setup_data
python manage.py runserver

v »r U

By default sqlite is used, but postgresql is also supported. For this set the environment variable to the local postgres

settings

DJANGO_SETTINGS_MODULE=django_test_proj.settings_postgres_local

15

	Overview
	Overview
	How it works

	Installation
	Requirements
	Installation

	Getting Started
	Example Model
	Implicit Filter Creation
	Explicit Filter Creation

	Limitations
	Available filter expressions
	Property types
	Performance
	Database limitations

	Additional FilterSet Options
	Meta options

	Filter Reference
	Filter to Property Filter Mapping
	Supported Property Filter Expressions
	Supported Base Lookup Expressions
	Invalid Type Comparison
	Core Arguments
	Appendix

	Development and Testing
	Run the Test Suite locally
	Run the Linters
	Run the Django Test Project

